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A facile stereoselective total synthesis of secondary metabolite (+)-polyrhacitide A is described. Stereose-
lective aldol reaction, Horner–Wardsworth–Emmons reaction, Evans acetal intramolecular oxa-Michael
reaction and diastereoselective syn reduction reaction are the key steps involved in the target synthesis.
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Secondary metabolites continue to address several problems to-
wards human health care despite the fact that they are not in-
volved in direct growth or reproduction of the producing
organism. The secondary metabolites comprising macrolide pep-
tides, alkaloids, terpenoids and polyketides obtained from several
sources have been found to display potent antibiotic, antifungal
and antiviral properties.1 Very recently, Jiang and Kouno have re-
ported the isolation of two unusual bicyclic lactone unit containing
compounds polyrhacitides A 1 and B 2 from the Chinese ant species
Polyrhacis lamellidens Smith.2 This unit was also found to be pres-
ent as a constituent in the molecules obtained from the tree ex-
tracts of Cryptocarya species 3–5 (Fig. 1).3 The ant P. lamellidens
has been used as a folk medicine in the treatment of rheumatoid
arthritis and hepatitis in China and the crude MeOH extract of this
ant was also found to display significant analgesic and anti-inflam-
matory effects.4 The structures of polyrhacitides A and B were
identified based on exhaustive NMR studies and the absolute con-
figuration was assigned based on acetonide and Mosher’s ester
method. As these natural products are available in very scarce
amounts, total synthesis becomes a viable approach for their avail-
ability towards exploring the biological properties. While there is
only one total synthesis for polyrhacitides A and B reported by
Menz and Kirsch5 involving an iterative approach, the strategy re-
quires lengthy steps and thus the new synthetic strategies are well
desired.

In continuation of our long-term projects involving the total
synthesis of polyketides,6 we herein wish to report the stereoselec-
tive total synthesis of polyrhacitide A by successful implementa-
tion of the strategies developed towards the synthesis of the all
syn 1,3-polyol functionalities.

Retrosynthetically, it was envisaged that the target compound
could be obtained from the key precursor 6 which can undergo
acid-mediated one-pot dibenzylidene acetal deprotection, lacton-
ization and oxa-Michael reaction. The precursor 6 can be synthe-
ll rights reserved.

: +91 4027160387.
sized from amide 8 following a seven-step sequence through an
intermediate 7 involving stereoselective reduction, Horner–Wads-
worth–Emmons–Wittig reaction and Evans acetal intramolecular
conjugate addition reaction as the key steps. The amide 8 in turn
can be obtained from 9 involving the auxillary cleavage, followed
by a Wittig reaction and subsequent Evans acetal intramolecular
Ph Ph9
10

Scheme 1. Retrosynthesis.

http://dx.doi.org/10.1016/j.tetlet.2010.02.070
mailto:yadavpub@iict.res.in
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


OH

N
O

O O

N
O

OO

Ph

O
CHO

O

Ph

O O

Ph

OH

N

O

S

Ph

S

OH O

N S

S

Ph

O

N S

S

Ph

P
O

EtO
EtO

O

N
Me

OMe

6 6

 DIBAL-H, THF

2. 11, DBU, LiCl, 
CH3CN:DCM (3:1)
rt, 18h, 67 % (overall)

PhCHO, KOtBu,

THF, 0 ºC,  
4h, 90% 

1. DIBAL-H, THF
    5 min, -78 ºC 

6

6

10, TiCl4, DIPEA
    DCM
0 ºC -rt, 1h 

<20%

15 min, -78 ºC, 
       92 %12 8 13

14

61-Octanal +

TiCl4, DIPEA, 
dry DCM

-78 ºC, 45 min 
52%10

9

11

Scheme 2.

O OHO

Ph

O

N
O

O OO

Ph

O OHO

Ph

O OO

Ph

O

N
O

O

Ph

O OHO

Ph

O OO

Ph

O

Ph

COOMe
O

O
O

OHOH

H

15
7

16

6
6

6

AllylMgCl, THF

0 ºC, 30 min 
     82 %

LiI-LiAlH4 (1:1)
      THF

-40 ºC to -100 ºC  
  30 min, 93 %

PhCHO, KOtBu
 THF

0 ºC, 4h, 86% 
(yield based on recovery 

of starting material)

6

     9 : 1 
(syn : anti)

11, DBU, LiCl, 
CH3CN:DCM (3:1)
rt, 18h, 62 % for two steps

O3, DCM, -78 ºC 
5 min., then TPP

8

7a

6

+

17

6(CF3CH2O)2POCH2COOMe,
NaH, THF, -78 ºC, 
45 min, 90%

80% AcOH

100 ºC, overnight 
Polyrhacitide A 182%

DIBAL-H, THF,
30 min, -78 ºC, 83 % 

7

6

6

Scheme 3.

J. S. Yadav et al. / Tetrahedron Letters 51 (2010) 2154–2156 2155
oxa-Michael reaction. Compound 9 in turn is obtained from mod-
ified Evans aldol reaction of n-octanal and N-acetyl thiazolidinethi-
one 10 (Scheme 1).

An important element to our synthetic strategy is the utility of
asymmetric aldol reaction to establish the initial asymmetry. Thus,
our synthesis commenced with an aldol reaction7 of (S)-1-(4-ben-
zyl-2-thioxothiazolidin-3-yl)ethanone and n-octanal in the pres-
ence of titanium(IV) chloride and diisopropylethylamine to
install the first stereogenic centre yielding 9 as the major diaste-
reomer (Scheme 2). The compound 9 was treated with DIBAL-H
and subjected to a Wittig–Horner reaction8 with N-methoxy N-
methyl diethylphosphonoacetamide 119 to obtain the a,b-unsatu-
rated amide 12 exclusively as E-isomer. The compound 12 was
subjected to an Evans acetal intramolecular oxa-Michael reaction
with benzaldehyde and potassium tert-butoxide to yield the prod-
uct 8 in 90% yield 10 installing the desired 2nd stereocentre.

The amide 8 was reduced with DIBAL-H to the corresponding
aldehyde 13. With the aldehyde in hand, we attempted similar
iterative steps to generate further two stereocentres. However, as
the aldol reaction was very sluggish and the yield was very low
(<20%) for the product 14, we had to alter our approach for install-
ing the third stereocentre with better yields.

Thus, the compound 8 was treated with allyl magnesium chlo-
ride to get ketone 15. The b-alkoxy ketone 15 was subjected to che-
lation-controlled syn reduction11 using LiAlH4 and LiI to get the
desired homoallyl alcohol 7 along with an easily separable isomer
7a in 9:1 ratio. Compound 7 was subjected to ozonolysis to get the
corresponding aldehyde and was immediately treated with 11 in
the presence of DBU and LiCl to get the a,b-unsaturated amide
16. The compound 16 was again subjected to Evans acetal-forming
reaction to install the fourth stereocentre yielding the product 17.
With the installation of four stereocentres, the rest was to set a
stage for building up the six-membered lactone ring formation. To-
wards this, the compound 17 was treated with DIBAL-H to get the
corresponding aldehyde and then subjected to Horner–Wittig reac-
tion with bis(2,2,2-trifluoromethyl)(methoxy carbonylmeth-
yl)phosphonate12 to get the key precursor 6 with all syn bis
benzylidene-protected tetrol and an unsaturated ester. Exposure
of this key precursor 6 to 80% AcOH13 at 100 �C for 18 h yielded
the desired bicyclic product polyrhacitide A (Scheme 3). The ana-
lytical data14 were found to be identical and optical rotation was
comparable with the reported data of both the natural2 and syn-
thetic products.5

In conclusion, a concise total synthesis of polyrhacitide A has
been accomplished in 12 steps. Modified Evans aldol approach,
Evans acetal intramolecular oxa-Michael reaction and chelation-
controlled stereoselective keto reduction reactions are the key
steps involved in the target synthesis. This approach may find wide
utility in exploring the synthesis of other diastereomers for their
biological evaluation. The total synthesis of polyrhacitide B is being
currently investigated following the above-mentioned synthetic
strategy.
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